Posts

Showing posts from February, 2023

Terminologies associated with the linear regression

  Decision tree classification in R Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists. In this article, we will learn about decision trees, how to work with decision trees, and how to implement decision trees in R. We will also discuss the applications of decision trees along with their advantages and disadvantages What is a decision tree and how does it work? Decision trees are a non-parametric form of supervised machine learning algorithm used for both classification and regression. As the name suggests, decision trees work by asking a Boolean form of question and, based on the answer, make a decision that goes further in the form of a tree, thus the name decision tree. The model further asks the questions until the predict...

linear regression in r

  Decision tree classification in R Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists. In this article, we will learn about decision trees, how to work with decision trees, and how to implement decision trees in R. We will also discuss the applications of decision trees along with their advantages and disadvantages What is a decision tree and how does it work? Decision trees are a non-parametric form of supervised machine learning algorithm used for both classification and regression. As the name suggests, decision trees work by asking a Boolean form of question and, based on the answer, make a decision that goes further in the form of a tree, thus the name decision tree. The model further asks the questions until the predict...

How mapreduce works

  https://www.dataspoof.info/post/category/big-data/ When Hadoop word comes to mind instantly, one more word also comes side by side in mind which is big data. Big data means a very large amount of data.…

distinct set of elements using MapReduce

 https://www.dataspoof.info/post/category/big-data/ When Hadoop word comes to mind instantly, one more word also comes side by side in mind which is big data. Big data means a very large amount of data.…

Median and Standard deviation using MapReduce

 https://www.dataspoof.info/post/category/big-data/ When Hadoop word comes to mind instantly, one more word also comes side by side in mind which is big data. Big data means a very large amount of data.…

Terminologies associated with the linear regression

  Decision tree classification in R Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists. In this article, we will learn about decision trees, how to work with decision trees, and how to implement decision trees in R. We will also discuss the applications of decision trees along with their advantages and disadvantages What is a decision tree and how does it work? Decision trees are a non-parametric form of supervised machine learning algorithm used for both classification and regression. As the name suggests, decision trees work by asking a Boolean form of question and, based on the answer, make a decision that goes further in the form of a tree, thus the name decision tree. The model further asks the questions until the predict...

Advantages and disadvantages of using the Ridge Regression

  Decision tree classification in R Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists. In this article, we will learn about decision trees, how to work with decision trees, and how to implement decision trees in R. We will also discuss the applications of decision trees along with their advantages and disadvantages What is a decision tree and how does it work? Decision trees are a non-parametric form of supervised machine learning algorithm used for both classification and regression. As the name suggests, decision trees work by asking a Boolean form of question and, based on the answer, make a decision that goes further in the form of a tree, thus the name decision tree. The model further asks the questions until the predict...

implementation of lasso regression in r

  Decision tree classification in R Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists. In this article, we will learn about decision trees, how to work with decision trees, and how to implement decision trees in R. We will also discuss the applications of decision trees along with their advantages and disadvantages What is a decision tree and how does it work? Decision trees are a non-parametric form of supervised machine learning algorithm used for both classification and regression. As the name suggests, decision trees work by asking a Boolean form of question and, based on the answer, make a decision that goes further in the form of a tree, thus the name decision tree. The model further asks the questions until the predict...

lasso regression in r

  Decision tree classification in R Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists. In this article, we will learn about decision trees, how to work with decision trees, and how to implement decision trees in R. We will also discuss the applications of decision trees along with their advantages and disadvantages What is a decision tree and how does it work? Decision trees are a non-parametric form of supervised machine learning algorithm used for both classification and regression. As the name suggests, decision trees work by asking a Boolean form of question and, based on the answer, make a decision that goes further in the form of a tree, thus the name decision tree. The model further asks the questions until the predict...

implementaion of decision tree in r

  https://www.dataspoof.info/post/decision-tree-classification-in-r/ Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists.

How to calculate Entropy and Information gain in Decision trees

  https://www.dataspoof.info/post/decision-tree-classification-in-r/ Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists.

Decision tree classification in R

  https://www.dataspoof.info/post/decision-tree-classification-in-r/ Decision trees are one of the most basic and widely used machine learning algorithms, which fall under supervised machine learning techniques. Decision trees can handle both regression and classification tasks, and therefore learning decision trees is a must for those who aspire to be data scientists.